

Big-O Notation

Estimating Quantities

These two square plates are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second square?

10m 10m

20m20m

Mass: 100kg

These two square plates are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second square?

10m 10m

20m20m

Mass: 100kg

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

These two square plates are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second square?

10m 10m

20m20m

Mass: 100kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

10m 10m

20m20m

Mass: 60kg

These two cubes are made of the same material.

What’s your best guess for the mass of the second cube?

10m

Mass: 100kg

20m

These two cubes are made of the same material.

What’s your best guess for the mass of the second cube?

10m

Mass: 100kg

20m

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

These two cubes are made of the same material.

What’s your best guess for the mass of the second cube?

10m

Mass: 100kg

20m

Knowing the rate at which some quantity
scales allows you to predict its value in the

future, even if you don’t have an exact
formula.

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

Doubling r increases area 4×.
Tripling r increases area 9×.

r
2r

3r

A 4A 9A A’ 4A’ 9A’

This just says that these
quantities grow at the same

relative rates. It does not
say that they’re equal!

Big-O Notation

● Big-O notation is a way of quantifying the
rate at which some quantity grows.

● For example:
● A square of side length r has area O(r2).
● A circle of radius r has area O(r2).
● A cube of side length r has volume O(r3).
● A sphere of radius r has volume O(r3).
● A sphere of radius r has surface area O(r2).
● A cube of side length r has surface area O(r2).

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Example: Network Value

● Metcalfe’s Law says that

The value of a communications
network with n users is O(n2).

● Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

● Reasonable guess: The network needs to
grow its value 100×. Since value grows
quadratically with size, it needs to grow its
user base 10×, requiring 100,000,000 users.

A Messier Example: Manufacturing

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = an + b

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

We can fit a line with two
points, so we can make
good future predictions
based on knowledge of

two quantities.

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

n 2n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

If we know the cost of
producing n units for a
“large” value of n, we’d

expect the cost of producing
2n units to be roughly double

that amount.

n 2n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

n 2n

Making Widgets
to

ta
l

e
xp

e
n

se
s

number of widgets produced

Cost(n) = O(n)

If we know the cost of
producing n units for a

“small” value of n, we can’t
make good predictions about

the cost of producing 2n
units.

n 2n

Nuances of Big-O Notation

● Big-O notation is designed to capture the
rate at which a quantity grows.

● It does not capture information about
● leading coefficients: the area of a square of

side length r and a circle of radius r are each
O(r2).

● lower-order terms: the functions n, 5n, and
137n + 42 are all O(n).

● However, it’s still a powerful tool for
predicting behavior.

What does big-O notation have to
do with computer science?

Time-Out for Announcements!

Assignment 4

● Assignment 3 was due today at 1:00PM.
● Need more time? You have four free “late days” to use over the

quarter. You can use up to two of them here.
● Assignment 4 (Recursion to the Rescue!) goes out

today. It’s due next Friday at 1:00PM. You may work in
pairs on this assignment.
● Play around with recursive problem-solving in realistic

situations.
● Explore the power – and potential pitfalls – of recursive

optimization.
● As always, feel free to ask for help when you need it!

Ping us on EdStem, stop by the LaIR, visit our office
hours, or email your section leader!

Midterm Exam Reminder

● Our midterm exam will be on Monday, February 13th from
7:00PM – 10:00PM.

● We will go over more exam logistics this upcoming Monday.
Briefly:
● The exam covers L00 – L09 (basic C++ up through but not including

recursive backtracking) and A0 – A3 (debugging through recursion).
● It’s a traditional sit-down, pencil-and-paper exam.
● It’s closed-book, closed-computer, and limited-note. You can bring an

8.5” × 11” sheet of notes with you to the exam.
● We’ve posted a huge searchable bank of practice problems to

the course website, along with three practice exams made
from questions selected from that bank.

● Students with OAE accommodations: If you need exam
accommodations, please contact us ASAP if you haven’t yet
done so.

fg
(The Unix command to resume a program that was paused)

What does big-O notation have to
do with computer science?

Fundamental Question:

How do we measure efficiency?

One Idea: Runtime

Why Runtime Isn’t Enough

● Measuring wall-clock runtime is less than
ideal, since
● it depends on what computer you’re using,
● what else is running on that computer,
● etc.

● Worse, individual runtimes can’t
predict future runtimes.

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,

how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

One possible answer: 3n + 4.

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1

Is this useful?

What does that
tell us?

One possible answer: 3n + 4.
More useful answer: O(n).

double averageOf(const Vector<int>& vec) {
 double total = 0.0;

 for (int i = 0; i < vec.size(); i++) {
 total += vec[i];
 }

 return total / vec.size();
}

1

1 n+1 n

n

1 Doubling the size of the
input roughly doubles the

runtime.

If we get some data points,
we can extrapolate

runtimes to good precision.

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 do a fixed amount of work;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 do a fixed amount of work;
 }
 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {

 do O(n) units of work;

 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {
 for (int i = 0; i < n; i++) {

 do O(n) units of work;

 }
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

void printStars(int n) {

 do O(n2) units of work;

}

Answer: O(n2).

void printStars(int n) {

 do O(n2) units of work;

}

Answer: O(n2).

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
}

Answer: O(n2).

void printStars(int n) {
 for (int i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 cout << '*' << endl;
 }
 }
} If we time this code on

input n, how much longer
will it take to run on the

input 2n?

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 do one unit of work;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 do one unit of work;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {

 do 5n units of work;

 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {

 do 5n units of work;

 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

Any linear
function is O(n).

The leading
coefficient is

ignored.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {

 do O(n) work;

 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

Any linear
function is O(n).

The leading
coefficient is

ignored.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {

 do O(n) work;

 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {

 do 2n * O(n) work;

}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {

 do 2n * O(n) work;

}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

As before, big-O
ignores any leading

coefficients.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {

 do O(n2) work;

}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

As before, big-O
ignores any leading

coefficients.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 do one unit of work;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 do one unit of work;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do 3n units of work;

 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 for (int i = 0; i < 8; i++) {
 do one unit of work;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 for (int i = 0; i < 8; i++) {
 do one unit of work;
 }
}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 do 8 units of work;

}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 do 8 units of work;

}

O(n2)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

 do 8 units of work;

}

O(n2)Any linear
function is O(n).
The y-intercept
doesn’t matter.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {

 do O(n) units of work;

}

O(n2)Any linear
function is O(n).
The y-intercept
doesn’t matter.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

O(n)

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
 for (int i = 0; i < 2 * n; i++) {
 for (int j = 0; j < 5 * n; j++) {
 cout << '*' << endl;
 }
 }
}
void pando(int n) {
 for (int i = 0; i < 3 * n; i++) {
 cout << "*" << endl;
 }
 for (int i = 0; i < 8; i++) {
 cout << "*" << endl;
 }
}

O(n2)

O(n)

Recap from Today

● Big-O notation captures the rate at which
a quantity grows or scales as the input
size increases.

● Big-O notation ignores low-order terms
and constant factors.

● “When in doubt, work inside out!” When
you see loops, work from the inside out
to determine the big-O complexity.

Your Action Items

● Read Chapter 10.1 – 10.2.
● It’s all about big-O and efficiency, and it’s a

great complement to what we covered today.
● Read the Guide to Big-O Notation.

● It includes a bunch of useful tips that expand
upon what we did in lecture today.

● Start Assignment 4.
● If you want to follow our suggested timetable,

aim to complete Win Sum, Lose Sum and Shift
Scheduling by this Monday.

Next Time

● Sorting Algorithms
● How do we get things in order?

● Designing Better Algorithms
● Using predictions from big-O notation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

