Big-O Notation

Estimating Quantities

Mass: 100kg

These two square plates are made of the same material.
They have the same thickness.

What'’s your best guess for the mass of the second square?

Answer at

© {0
10 @ https://pollev.com/cs106bwin23

Mass: 100kg

These two square plates are made of the same material.
They have the same thickness.

What'’s your best guess for the mass of the second square?

https://pollev.com/cs106bwin23

Mass: 100kg

These two square plates are made of the same material.
They have the same thickness.

What'’s your best guess for the mass of the second square?

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

Mass: 60kg

These two figures are made of the same material.
They have the same thickness.

What’s your best guess for the mass of the second figure?

Mass: 100kg

These two cubes are made of the same material.
What'’s your best guess for the mass of the second cube?

Answer at
https://pollev.com/cs106bwin23 o
L

A0

Mass: 100kg

These two cubes are made of the same material.
What'’s your best guess for the mass of the second cube?

https://pollev.com/cs106bwin23

\\/

Mass: 100kg

These two cubes are made of the same material.
What'’s your best guess for the mass of the second cube?

Knowing the rate at which some quantity
scales allows you to predict its value in the
future, even if you don’t have an exact
formula.

Big-O Notation

* Big-O notation is a way of quantitying the
rate at which some quantity grows.

 For example:

* A square of side length r has area O(r?).

A circle of radius r has area O(r?).

4A

I
r

9A

2r

3r

Doubling r increases area 4 X.
Tripling r increases area 9Xx.

F .
r M
2r | |
3r
Doubling r increases area 4 X.
Tripling r increases area 9Xx.

 For example:

* A square of side length r has area O(r?).
A circle of radius r has area O(r?).

Doubling r increases area 4 X. Doubling r increases area 4 X.
Tripling r increases area 9xX. Tripling r increases area 9xX.

This just says that these
quantities grow at the same
relative rates. It does not
say that they’'re equal!

 For example:

* A square of side length r has area O(r?).
A circle of radius r has area O(r?).

Doubling r increases area 4 X. Doubling r increases area 4 X.
Tripling r increases area 9xX. Tripling r increases area 9xX.

Big-O Notation

* Big-O notation is a way of quantifying the
rate at which some quantity grows.

 For example:

* A square of side length r has area O(r?).

* A circle of radius r has area O(r?).

* A cube of side length r has volume O(r?).

* A sphere of radius r has volume O(r?).

* A sphere of radius r has surface area O(r?).

A cube of side length r has surface area O(r?).

Example: Network Value

 Metcalfe’s Law says that

The value of a communications
network with n users is O(n?).

Example: Network Value

 Metcalfe’s Law says that

The value of a communications
network with n users is O(n?).

 Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

Example: Network Value

 Metcalfe’s Law says that

The value of a communications
network with n users is O(n?).

 Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth

$1,000,000,000.
Answer at
https://pollev.com/cs106bwin23

https://pollev.com/cs106bwin23

Example: Network Value

 Metcalfe’s Law says that

The value of a communications
network with n users is O(n?).

 Imagine a social network has 10,000,000
users and is worth $10,000,000. Estimate
how many users it needs to have to be worth
$1,000,000,000.

* Reasonable guess: The network needs to
grow its value 100x. Since value grows
quadratically with size, it needs to grow its
user base 10X, requiring 100,000,000 users.

A Messier Example: Manufacturing

total expenses

Making Widgets

Cost(n) = an + bI

number of widgets produced

Making Widgets

Cost(n) = O(n) I

total expenses

number of widgets produced

Making Widgets

Cost(n) = O(n)

total expenses

We can fit a line with two
points, so we can make
good future predictions
based on knowledge of

two quantities.

number of widgets produced

Making Widgets

Cost(n) = O(n) I

total expenses

number of widgets produced

Making Widgets

Cost(n) = O(n) I

total expenses

n:

number 'of widgets produced

Making Widgets

Cost(n) = O(n) I

total expenses

n:

2n

number 'of widgets produced

Making Widgets

Cost(n) = O(n)

total expenses

If we know the cost of
producing n units for a
“large” value of n, we’d
expect the cost of producing
2n units to be roughly double
that amount.

n 2n

number 'of widgets produced

Making Widgets

Cost(n) = O(n) I

total expenses

number of widgets produced

Making Widgets

Cost(n) = O(n) I

total expenses

number of widgets produced

Making Widgets

Cost(n) = O(n) I

total expenses

number of widgets produced

Making Widgets

Cost(n) = O(n)

total expenses

If we know the cost of
producing n units for a
“small” value of n, we can’t
make good predictions about
the cost of producing 2n
units.

number of widgets produced

Nuances of Big-O Notation

* Big-O notation is designed to capture the
rate at which a quantity grows.

* It does not capture information about

* leading coefficients: the area of a square of

side length r and a circle of radius r are each
O(r?).

 Jower-order terms: the functions n, bn, and
137n + 42 are all O(n).

« However, it’s still a powertul tool for
predicting behavior.

What does big-O notation have to
do with computer science?

Time-Out for Announcements!

Assignment 4

» Assignment 3 was due today at 1:00PM.

 Need more time? You have four free “late days” to use over the
quarter. You can use up to two of them here.

» Assignment 4 (Recursion to the Rescue!) goes out
today. It’s due next Friday at 1:00PM. You may work in
pairs on this assignment.

* Play around with recursive problem-solving in realistic
situations.

« Explore the power - and potential pitfalls - of recursive
optimization.
* As always, feel free to ask for help when you need it!
Ping us on EdStem, stop by the LalR, visit our office
hours, or email your section leader!

Midterm Exam Reminder

* Our midterm exam will be on Monday, February 13* from
7:00PM - 10:00PM.

* We will go over more exam logistics this upcoming Monday.
Briefly:

 The exam covers L0OO - LO9 (basic C++ up through but not including
recursive backtracking) and AO - A3 (debugging through recursion).
« It’s a traditional sit-down, pencil-and-paper exam.

« It’s closed-book, closed-computer, and limited-note. You can bring an
8.5” X 11” sheet of notes with you to the exam.

« We’ve posted a huge searchable bank of practice problems to
the course website, along with three practice exams made
from questions selected from that bank.

» Students with OAE accommodations: If you need exam

accommodations, please contact us ASAP if you haven't yet
done so.

g

(The Unix command to resume a program that was paused)

What does big-O notation have to
do with computer science?

Fundamental Question:

How do we measure efficiency?

One Idea: Runtime

Why Runtime Isn’t Enough

* Measuring wall-clock runtime is less than
ideal, since
* it depends on what computer you’'re using,
 what else is running on that computer,
* etc.

e Worse, individual runtimes can’t
predict future runtimes.

double averageOf(const Vector<int>& vec) {
double total = 0.0;

for (int 1 = 0; 1 < vec.size(); i++) {
total += vec[i];
}

return total / vec.size();

}

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,
how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
double total = 0.0;

1 n+1 n

for (int 1 = 0; 1 < vec.size(); i++) {
total += vec[i];

}

return total / vec.size(); 1

}

Assume any individual statement takes one unit
of time to execute. If the input Vector has n elements,
how many time units will this code take to run?

double averageOf(const Vector<int>& vec) {
double total = 0.0;

1

for (int i

}

return total / vec.size();

}

n+1

n

0; 1 < vec.size(); i++) {
total += vec[i];

Is this useful?

What does that
tell us?

One possible answer: 3n + 4.

double averageOf(const Vector<int>& vec) {
double total = 0.0;

1 n+1 n

for (int 1 = 0; 1 < vec.size(); i++) {
total += vec[i];

}

return total / vec.size(); | Doubling the size of the
} input roughly doubles the
runtime.

If we get some data points,
we can extrapolate
runtimes to good precision.

More useful answer: O(n).

vold printStars(int n) {
for (int 1 = 0; 1 < n; i1++) {
for (int j = 0; j < n; j++) {
cout << '*' << endl;
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

cout << '*' << endl;

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

do a fixed amount of work;

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

for (int j = 0; j < n; j++) {
do a fixed amount of work;
}

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

do 0(n) units of work;

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

for (int 1 = 0; 1 < n; 1++) {

do 0(n) units of work;

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

do O(n*) units of work;

How much time will it take for this code to run,
as a function of n? Answer using big-O notation.

do O(n*) units of work;

Answer: O(n?).

vold printStars(int n) {
for (int 1 = 0; 1 < n; i1++) {
for (int j = 0; j < n; j++) {
cout << '*' << endl;
}

Answer: O(n?).

Answer at
https://pollev.com/cs106bwin23

vold printStars(int n) {
for (int 1 = 0; 1 < n; i++) {
for (int j = 0; j < n; j++) {
cout << '*' << endl;
}

} If we time this code on

input n, how much longer

will it take to run on the
input 2n?

Answer: O(n?).

https://pollev.com/cs106bwin23

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
for (int 1 =0; 1 <2 * n; i1++) {
for (int j =0; j <5 * n; j++) {
cout << '*' << endl;
}

}
}
void pando(int n) {
for (int 1 = 0; 1 <3 * n; i1++) {
cout << "*" << endl;
}

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

voild beni(int n) {
for (int 1 =0; 1 <2 * n; i1++) {
for (int j =0; j <5 * n; j++) {
cout << '*' << endl;
}

} Answer at
} https://pollev.com/cs106bwin23
void pando(int n) {
for (int 1 = 0; 1 <3 * n; i1++) {
cout << "*" << endl;
}

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

https://pollev.com/cs106bwin23

void beni(int n) {
for (int 1 =0; 1 <2 * n; i1++) {
for (int j =0; j <5 * n; j++) {
cout << '*' << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
for (int 1 =0; 1 <2 * n; i1++) {
for (int j =0; j <5 * n; j++) {
cout << '*' << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
for (int 1 =0; 1 <2 * n; i1++) {
for (int j =0; j <5 * n; j++) {
do one unit of work;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
for (int 1 =0; 1 <2 * n; i1++) {
for (int j = 0; j <5 * n; j++) {
do one unit of work;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
:Q;

for (int i 1 <2 *n; 1+4+) {

do 5n units of work;

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

voild beni(int n) {
for (int 1 =0; 1 <2 * n; i1++) {

do 5n units of work;

Any linear
function is O(n).
The leading
coefficient is
—> ignored.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

voild beni(int n) {
:@;

for (int i 1 <2 *n; 1+4+) {

do 0O(n) work;

Any linear
function is O(n).
The leading
coefficient is
—> ignored.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {
:@;

for (int i 1 <2 *n; 14+) {

do 0O(n) work;

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void beni(int n) {

do 2n * 0(n) work;

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

voild beni(int n) {

do 2n * 0(n) work;

As before, big-O
) ignores any leading
coefficients.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

voild beni(int n) {

do 0(n?) work;

As before, big-O
) ignores any leading
coefficients.

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

voild beni(int n) {

for (int 1 =0; 1 <2 * n; 1++) {
for (int j =0; j <5 * n; j++) { | O(n?)
cout << '*' << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

vold pando(int n) {
for (int 1 = 0; 1 < 3 * n; 1++) {
cout << "*" << endl;
}

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

vold pando(int n) {
for (int 1 = 0; 1 < 3 * n; 1++) {
cout << "*" << endl;
}

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

vold pando(int n) {
for (int 1 = 0; 1 < 3 * n; 1++) {
do one unit of work;
}

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

vold pando(int n) {
for (int 1 = 0; 1 < 3 * n; i1++) {
do one unit of work;
}

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void pando(int n) {
do 3n units of work;

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void pando(int n) {
do O(n) units of work;

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void pando(int n) {
do O(n) units of work;

for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void pando(int n) {
do O(n) units of work;

for (int 1 = 0; 1 < 8; 1++) {
do one unit of work;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void pando(int n) {
do O(n) units of work;

for (int 1 = 0; 1 < 8; 1++) {
do one unit of work;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void pando(int n) {

do O(n) units of work;

do 8 units of work;

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void pando(int n) {

do O(n) units of work;

do 8 units of work;

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

Any linear
function is O(n).
The y-intercept
doesn’t matter.

vold pando(int n

do O(n) units of work;

do 8 units of work;

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

Any linear
function is O(n).
The y-intercept
doesn’t matter.

vold pando(int n

do O(n) units of work;

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

void pando(int n) {
for (int 1 = 0; 1 <3 * n; i1++) {
cout << "*" << endl;
} O(n)
for (int 1 = 0; 1 < 8; 1++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

voild beni(int n) {
for (int 1 =0; 1 <2 * n; i1++) {
for (int j =0; j <5 *n; j++) { | O(n?)
cout << '*' << endl;
}

| o)
oo

}

vold pando(int n) {
for (int 1 = 0; 1 < 3 * n; 1++) {

cout << "*" << endl;
} O(n)
for (int 1 = 0; 1 < 8; i++) {
cout << "*" << endl;
}

How much time will it take for these functions to run,
as a function of n? Answer using big-O notation.

Recap tfrom Today

* Big-O notation captures the rate at which
a quantity grows or scales as the input
Size Increases.

* Big-O notation ignores low-order terms
and constant factors.

 “When in doubt, work inside out!” When
you see loops, work from the inside out
to determine the big-O complexity.

Your Action Items

* Read Chapter 10.1 - 10.2.

» It's all about big-O and efficiency, and it’s a
great complement to what we covered today.

* Read the Guide to Big-O Notation.

It includes a bunch of useful tips that expand
upon what we did in lecture today.

» Start Assignment 4.

 If you want to follow our suggested timetable,
aim to complete Win Sum, Lose Sum and Shift
Scheduling by this Monday.

Next Time

* Sorting Algorithms
« How do we get things in order?
* Designing Better Algorithms

* Using predictions tfrom big-O notation.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

